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Observation of lasing modes with exotic localized
wave patterns from astigmatic
large-Fresnel-number cavities
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We investigate the lasing modes in large-Fresnel-number laser systems with astigmatism effects. Experi-
mental results reveal that numerous lasing modes are concentrated on exotic patterns corresponding to in-
triguing geometries. We theoretically use the quantum operator algebra to construct the wave representa-
tion for manifesting the origin of the localized wave patterns. © 2010 Optical Society of America
OCIS codes: 070.1675, 070.2580.
Laser resonators have been employed as analogous
systems for generating high-order lasing modes to
manifest the wave patterns of quantum coherent
states, especially for mesoscopic and macroscopic re-
gions [1–4]. Various laser systems are widely used to
study optical pattern formation including, the
Laguerre–Gaussian (LG) modes, Hermite–Gaussian
(HG) modes, and the generalized coherent states that
form a general family to comprise the HG and LG
mode families as special cases [5,6]. Recently, we
have employed a large-Fresnel-number laser system
with an off-axis pumping scheme to visualize the co-
herent optical waves with localization related to the
Lissajous and trochoidal curves [7,8]. This result sig-
nifies that exploring the transformation geometry of
quantum coherent states plays a significant role in
understanding the quantum-classical connection.
More importantly, the investigation of high-order la-
ser modes is useful for developing the idea for gener-
ating the coherent structured light that can carry or-
bital angular momentum or contain optical vortices
for many applications [9,10].

In this Letter we experimentally performed a very
large off-axis pumping for studying the lasing modes
under the influence of considerable astigmatism. We
observed that numerous lasing modes with exotic lo-
calized wave patterns correspond to the topological
transformations. We used the quantum operator al-
gebra to derive the generalized unitary operator for
generating the eigenmodes for the spherical cavity
subject to the astigmatism effects. With the general-
ized unitary operator and the quantum-classical con-
nection, the geometries corresponding to the localized
lasing patterns can be perfectly manifested.

The present laser cavity was composed of a spheri-
cal mirror and a large-aperture gain medium, as
shown in Fig. 1. The gain medium was an a-cut
2.0 at. % Nd:YVO4 crystal with a length of 2 mm and
a cross section of 8�8 mm2 to comply with the re-
quirement of the extremely high transverse orders.
The pump source was a 2 W, 809 nm fiber-coupled la-
ser diode with a core diameter of 100 �m. A coupling
lens was used to focus the pump beam to be approxi-

mately 25 �m in the laser crystal. The spherical mir-
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ror was a 10 mm radius-of-curvature concave mirror
with antireflection coating at the pumping wave-
length on the entrance face �R�0.2%�, high-
reflection coating at lasing wavelength �R�99.8%�,
and high-transmission coating at the pumping wave-
length on the other surface �T�95%�. One planar
surface of the laser crystal was coated for antireflec-
tion at the pumping and lasing wavelengths; the
other surface was coated to be an output coupler with
a reflectivity of 99%. To generate the high-order
modes subject to considerable astigmatism, the
pumping beam was focused into the crystal in the re-
gion with a large off-axis displacement along the c
axis and a rather small displacement along the b
axis. We experimentally find that more than 100 dif-
ferent laser modes related to distinct localized wave
patterns can be generated at different degenerate
cavities. In addition to Lissajous and trochoidal pat-
terns [7,8] shown in Figs. 2(a) and 2(b), new findings
of numerous lasing patterns corresponding to the to-
pological transformations can be observed, as shown
in Figs. 2(c)–2(e). These patterns propagate in the
cavity with localization on 3D parametric surfaces,
which is distinct from M mode and spiral beams.
Since the laser cavity is an excellent analog system
for studying the coherent waves, the understanding
of these wave patterns should provide some useful in-
sights into the fundamental behavior of wave func-
tions at the border of the classical and quantum re-
gimes.

Fig. 1. (Color online) Experimental setup for the genera-
tion of high-order lasing modes in astigmatic cavities with

an off-axis pumping scheme.
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The paraxial eigenmodes of stable spherical cavi-
ties can be expressed as the normalized HG modes
[11] �m,n,l

�HG� �x ,y ,z�=�m,n
�HG��x ,y ,z�ei�m+n+1��G�z�e−i�m,n,l�x,y,z�,

where

�m,n
�HG��x,y,z� =

1

�2m+n−1�m!n!

1

w�z�
e−�x2+y2/w�z�2�

�Hm� �2

w�z�
x�Hn� �2

w�z�
y� , �1�

w�z�=wo�1+ �z /zR�2, �m,n,l�x ,y ,z�= �	m,n,lz /c��1+ �x2

+y2� /2�z2+zR
2 ��, wo is the beam waist, zR is the Ray-

leigh range, 	m,n,l is the resonance frequency, m and
n are the transverse mode indices, l is the longitudi-
nal mode index, and �G�z�=tan−1�z /zR� is the Gouy
phase. In the spherical cavity, 	m,n,l is given by
	m,n,l= ��l	L+ �m+n+1�	T��, where 	L is the longitu-
dinal mode spacing and 	T is the transverse mode
spacing. Since the paraxial wave equation can be ex-
actly mapped on the time-dependent 2D quantum
harmonic oscillator, the quantum operator algebra
can be employed to explore the eigenmodes for the
spherical cavity with the astigmatism effects [12,13].
The equivalent Hamiltonian for the HG modes can be
expressed as Ĥo=	T /2��2 /�x̃2+�2 /�ỹ2+ x̃2+ ỹ2� with
Ĥo��m,n

�HG�	= �m+n+1�	T��m,n
�HG�	, where x̃=�2x /w and

y=�2y /w are dimensionless spatial variables. The
operators for astigmatism and anisotropic effects can
be expressed as L̂1= 1

2 �x̃ỹ+� /�x̃� /�ỹ�, L̂2=1/2i�x̃� /�ỹ
− ỹ� /�x̃�, L̂3= 1

4 �x̃2+�2 /�x̃2− ỹ2−�2 /�ỹ2� [12]. Without
loss of generality, we model the 2D deformed har-
monic oscillator as Ĥp=Ĥ0+A · L̂1+B · L̂2+C · L̂3 to
consider the astigmatism and anisotropic effects,
where A, B, and C are constants and usually signifi-
cantly smaller than 	T. The operators L̂1, L̂2 and L̂3
have been verified to satisfy the Lie commutator al-
gebra �L̂i , L̂j�= i
i,j,kL̂k, where the Levi–Civita tensor

i,j,k is equal to +1 and −1 for even and odd permuta-
tions of its indices, respectively, and zero otherwise
[14]. With the SU(2) algebra, the eigenstates of
Ĥp can be derived to be ��m,n

�,� 	=Û��m,n
�HG�	 where

Û=e−i�L̂3e−i�L̂2, �=tan−1�B /A�, and �

=tan−1��A2+B2 /C�. This continuous transition be-
tween HG and LG modes is analogous to the transi-
tion between linear and circular polarization on the
Poincaré sphere [15]. In terms of the Wigner
d-matrix elements, the eigenstates ��m,n

�,� 	 can

Fig. 2. (Color online) Experimental far-field patterns: (a)
Lissajous pattern; (b) trochoidal pattern; (c), (d) other typi-
cal lasing patterns.
be explicitly expressed as a linear combination
of the states ��m,n
�HG�	: ��m,n

�,� 	
=
s=0

m+ne−is�ds−m+n/2,m−n/2
m+n/2 �����s,m+n−s

�HG� 	, where

ds−�m+n�/2,m−n/2
m+n/2 ���

= �s!�m + n − s�!m!n! 

=max�0,s−m�

min�n,s�

�
�− 1��cos��/2��n+s−2�sin��/2��m−s+2

!�n − �!�s − �!�m − s + �!
. �2�

The state ��m,n
�,� 	 for �=0 can be viewed as a rotation

of the HG mode ��m,n
�HG�	 with an angle � /2 in the �x ,y�

plane [5]. Figures 3(a)–3(e) show the numerical wave
patterns for the eigenstates ��m,n

�,� 	 with �m ,n�
= �18,55�, �=� /2 and five different � values. It can be
seen that the states ��m,n

�,� 	 for �=� /2 with the param-
eter � changing from 0 to � /2 correspond to the as-
tigmatic transformation from the HG mode to the LG
mode [5,6].

Experimental results have evidenced that [7,8]
that the longitudinal-transverse coupling in the
large-Fresnel-number cavity usually forces the ratio
	T /	L to be locked to a rational number P /Q. As a re-
sult, the group of the HG modes �mo+pk,no+qk,lo+sk

�HG� with
k=0,1,2,3¯◅ forms a family of frequency
degenerate states, where the integers �p ,q ,s� obey
the equation s+ �p+q��P /Q�=0. It has been verified
[7] that the three-dimensional (3D) coherent states
constructed by the family of �mo+pk,no+qk,lo+sk

�HG�

can be expressed as ��mo,no,lo
p,q,s ���	

=
k=−M
M CM,keik���mo+pk,no+qk,lo+sk

�HG� 	, where CM,k

=2−M� 2M
M+k �1/2 is the weighting coefficient, � n

k �=n! /k!�n
−k�! represents the binomial coefficient, and the
parameter � is the relative phase between various
HG modes at z=0. With the expression of
Eq. (1), we can obtain ��mo,no,lo

p,q,s ���	
= ��mo,no

p,q ���	ei�mo+no+1��G�z�e−i�mo,no,lo
�x,y,z� with ��mo,no

p,q ���	
=
k=−M

M CM,keik��z�eik���mo+pk,no+qk
�HG� 	, where ��z�= �p

+q��G�z�. Here, m0 and n0 indicate the order of the
coherent state; M, the number of eigenstates in-
volved in the superposition, is much smaller than m0
and n0. As discussed earlier, the astigmatism and an-
isotropic effects can be considered with the unitary
operator Û=e−i�L̂3e−i�L̂2. Consequently, the 3D coher-
ent states subject to the astigmatism effect can be
given by Û��mo,no,lo

p,q,s ���	, and their wave patterns are

determined by the wave function Û��mo,no

p,q ���	
=
k=−M

M CM,keik��z�eik���mo+pk,no+qk
�,� 	. The state

��no,mo

p,q ���	 has been verified to have the intensity lo-

Fig. 3. (Color online) Numerical wave patterns for the in-
tensity of eigenstates ��m,n

�,� 	 with �m ,n�= �18,55�, �=� /2:

(a) �=0, (b) �=� /8, (c) �=� /4, (d) �=3� /8, (e) �=� /2.
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calized on the Lissajous parametric surface: x
=Re�X�� ,z��; y=Re�Y�� ,z��, where 0���2�, −��z
��, X�� ,z�=�now�z�ei�q�+���z�+�/p��, and Y�� ,z�
=�mow�z�eip� [7]. Using the isomorphic relation be-
tween SU(2) algebra and SO(3) algebra, the 3D co-
herent state Û��mo,no

p,q ���	 can be deduced to be local-

ized on the parametric surface: x=Re�X̃�� ,z��; y
=Re�Ỹ�� ,z��, where

�X̃��,z�

Ỹ��,z�
� = e−i�/2 cos��

2� − e−i�/2 sin��

2�
ei�/2 sin��

2� ei�/2 cos��

2� �
��X��,z�

Y��,z�� . �3�

Figures 4(a)–4(e) show the classical periodic orbits
computed with the parametric curves in Eq. (3) to
characterize the lasing patterns shown in Figs.
2(a)–2(e). The parameters are deduced from the best
fit to the experimental patterns; where �p ,q�
= �−1,10�, �mo ,no�= �40,200�, �� ,��= �0,0� for Fig.
4(a); �p ,q�= �−1,10�, �mo ,no�= �50,500�, �� ,��
= �� /2 ,� /2� for Fig. 4(b); �p ,q�= �1,4�, �mo ,no�
= �80,500�, �� ,��= �� /2 ,� /3� for Fig. 4(c); �p ,q�
= �1,6�, �mo ,no�= �80,500�, �� ,��= �� /2 ,� /3� for Fig.
4(d); �p ,q�= �2,5�, �mo ,no�= �100,400�, �� ,��
= �� /2 ,� /3� for Fig. 4(e). The good agreement vali-
dates our quantum operator model and confirms the
representation of the 3D coherent states Û��mo,no

p,q ���	.
Finally, it is worth while mentioning that the

transverse patterns of all experimental modes are po-
sition dependent during propagation. Figure 5(a)
shows the variation of the experimental transverse
patterns during propagation for the case correspond-
ing to the far-field pattern in Fig. 2(c). We also use
the 3D coherent state Û��mo,no

p,q ���	 to mimic the ex-
perimental wave pattern [Fig. 5(b)] corresponding to
Fig. 2(c) and to manifest the phase distribution for a
small region, as shown in Fig. 5(c).

In summary, we have experimentally observed nu-
merous lasing modes with exotic localized wave pat-
terns from spherical cavities subject to considerable
astigmatism. We have employed the quantum opera-
tor algebra to model the wave equation with the

Fig. 4. (Color online) (a)–(e) Geometric curves with Eq. (3)
corresponding to the experimental wave patterns shown in
Fig. 1. Detailed description for the parameters; see text.
astigmatism effects and have derived a generalized
unitary operator to obtain the eigenmodes. With the
generalized unitary operator and the quantum-
classical connection, we have perfectly manifested
the geometries corresponding to the localized lasing
patterns.
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